The three-dimensional stress-strain relationship for an isotropic material is given as \[ \begin{Bmatrix} \sigma_{xx} \sigma_{yy} \sigma_{zz} \tau_{yz} \tau_{xz} \tau_{xy} \end{Bmatrix} = \begin{bmatrix} P & Q & Q & 0 & 0 & 0 \\ Q & P & Q & 0 & 0 & 0 \\ Q & Q & P & 0 & 0 & 0 \\ 0 & 0 & 0 & R & 0 & 0 \\ 0 & 0 & 0 & 0 & R & 0 \\ 0 & 0 & 0 & 0 & 0 & R \end{bmatrix} \begin{Bmatrix} \varepsilon_{xx} \varepsilon_{yy} \varepsilon_{zz} \gamma_{yz} \gamma_{xz} \gamma_{xy} \end{Bmatrix}, \]
where \(P, Q, R\) are elastic constants; \(\sigma,\tau\) are normal and shear stresses; and \(\varepsilon,\gamma\) are normal and engineering shear strains. Which relation is correct?