Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
When a light ray falls on any object, it is bounced back from the object. This process is known as the Reflection of light. The light reflected from the object falls into our eyes, making the object visible to us. All the things we see around us are because of reflection.
The reflection of light depends on the type of object. A polished or smooth surface reflects most of the light falling on it, while a rough surface absorbs some amount of light and reflects back the rest of the light. The direction of reflected rays depends upon the surface of the object.