\(Let\) \(I\)=\(∫\)\(xsin^{-1}x\ dx\)
Taking as first function and x as second function and integrating by parts, we obtain
I= \(sin^{-1}x∫[x dx-∫{(\frac {d}{dx}sin^{-1}x)}∫x dx]dx\)
\(I= sin^{-1}x (\frac {x^2}{2})-∫\frac {1}{\sqrt {1-x^2}}.\frac {x^2}{2} dx\)
\(I= \frac {x^2sin^{-1}x}{2}+\frac 12∫\frac {-x^2}{\sqrt {1-x^2}} dx\)
I= \(\frac {x^2sin^{-1}x}{2}\) + \(\frac 12∫[{\frac {1-x^2}{\sqrt {1-x^2}}-\frac {1}{√1-x^2}}]dx\)
I= \(\frac {x^2sin^{-1}x}{2}\) + \(\frac 12∫[{\sqrt {1-x^2}-\frac {1}{\sqrt {1-x^2}}}]dx\)
I= \(\frac {x^2sin^{-1}x}{2}\) + \(\frac 12∫\frac x2{\sqrt {1-x^2\ }dx-∫\frac {1}{\sqrt {1-x^2}}}\ dx\)
I= \(\frac {x^2sin^{-1}x}{2}\) + \(\frac 12[{\frac x2\sqrt {1-x^2}+\frac 12sin^{-1}x-sin^{-1}x}]+C\)
I= \(\frac {x^2sin^{-1}x}{2}\) + \({\frac x4\sqrt {1-x^2}+\frac 14sin^{-1}x-\frac 12sin^{-1}x}+C\)
\(I= \frac 14(2x^2-1)sin^{-1}x+\frac x4\sqrt {1-x^2}+C\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,
