\(Let\) \(I\)=\(∫\)\(xsin^{-1}x\ dx\)
Taking as first function and x as second function and integrating by parts, we obtain
I= \(sin^{-1}x∫[x dx-∫{(\frac {d}{dx}sin^{-1}x)}∫x dx]dx\)
\(I= sin^{-1}x (\frac {x^2}{2})-∫\frac {1}{\sqrt {1-x^2}}.\frac {x^2}{2} dx\)
\(I= \frac {x^2sin^{-1}x}{2}+\frac 12∫\frac {-x^2}{\sqrt {1-x^2}} dx\)
I= \(\frac {x^2sin^{-1}x}{2}\) + \(\frac 12∫[{\frac {1-x^2}{\sqrt {1-x^2}}-\frac {1}{√1-x^2}}]dx\)
I= \(\frac {x^2sin^{-1}x}{2}\) + \(\frac 12∫[{\sqrt {1-x^2}-\frac {1}{\sqrt {1-x^2}}}]dx\)
I= \(\frac {x^2sin^{-1}x}{2}\) + \(\frac 12∫\frac x2{\sqrt {1-x^2\ }dx-∫\frac {1}{\sqrt {1-x^2}}}\ dx\)
I= \(\frac {x^2sin^{-1}x}{2}\) + \(\frac 12[{\frac x2\sqrt {1-x^2}+\frac 12sin^{-1}x-sin^{-1}x}]+C\)
I= \(\frac {x^2sin^{-1}x}{2}\) + \({\frac x4\sqrt {1-x^2}+\frac 14sin^{-1}x-\frac 12sin^{-1}x}+C\)
\(I= \frac 14(2x^2-1)sin^{-1}x+\frac x4\sqrt {1-x^2}+C\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,
