\(\dfrac{1}{2}(1+x^2)log(2+x^2)+\dfrac{x^{2}}{2}+C\)
\(\dfrac{1}{2}(1+x^2)log(1+x^2)-(\dfrac{1+x^2}{2})+C\)
\(\dfrac{1}{2}(1+x^2)log(2+x^2)-\dfrac{x^{2}}{2}+C\)
\((1+x^2)log(1+x^2)+(1+x^2)+C\)
\((1-x^2)log(1+x^2)+(1-x^2)+C\)
Step 1: Use integration by parts with: \[ u = \log(1+x^2) \quad \Rightarrow \quad du = \frac{2x}{1+x^2} dx \] \[ dv = x dx \quad \Rightarrow \quad v = \frac{x^2}{2} \]
Step 2: Apply the integration by parts formula: \[ \int u dv = uv - \int v du \] \[ \int x \log(1+x^2) dx = \frac{x^2}{2} \log(1+x^2) - \int \frac{x^2}{2} \cdot \frac{2x}{1+x^2} dx \]
Step 3: Simplify the remaining integral: \[ = \frac{x^2}{2} \log(1+x^2) - \int \frac{x^3}{1+x^2} dx \]
Step 4: Perform polynomial division on the integrand: \[ \frac{x^3}{1+x^2} = x - \frac{x}{1+x^2} \]
Step 5: Integrate term by term: \[ \int \left(x - \frac{x}{1+x^2}\right) dx = \frac{x^2}{2} - \frac{1}{2} \log(1+x^2) \]
Step 6: Combine all terms: \[ \frac{x^2}{2} \log(1+x^2) - \left(\frac{x^2}{2} - \frac{1}{2} \log(1+x^2)\right) + C \] \[ = \frac{1+x^2}{2} \log(1+x^2) - \frac{x^2}{2} + C \]
Conclusion: The correct answer is \(\boxed{B}\) \(\left( \frac{1}{2}(1+x^2)\log(1+x^2) - \frac{x^2}{2} + C \right)\).
Given
∫xlog(1+x^2)dx
To solve the question first multiply \(\dfrac{2}{2}\) in the above expression,
Then we get
\(∫\dfrac{1}{2}×2xlog(1+x^2)dx\)
Now take ,\((1+x^2)= t\)
Now, derivate both the sides with respect to \(x\) ,
Therefore, we get
\(2x dx= dt\)
substituting this expression in the main (given) expression we get
\(\dfrac{1}{2}(∫logt dt)\)
\(=\dfrac{1}{2} (tlogt-t)+C\)
\(=\dfrac{1}{2}(1+x^{2})(log(1+x^{2})-1)\)
\(=\dfrac{1}{2}(1+x^{2})log(1+x^{2})-\dfrac{1+x^{2}}{2}\)
Integration by Parts is a mode of integrating 2 functions, when they multiplied with each other. For two functions ‘u’ and ‘v’, the formula is as follows:
∫u v dx = u∫v dx −∫u' (∫v dx) dx
The first function ‘u’ is used in the following order (ILATE):
The rule as a diagram: