The correct answer is: \(=\frac{(2x^2-1)}{4}cos^{-1}x-\frac{x}{4}\sqrt{1-x^2}+C\) Let \(I=∫xcos^{-1} x. dx\) Taking \(cos^{−1} x\) as first function and \(x\) as second function and integrating by parts,we obtain \(I=cos^{-1}x∫x.dx-∫[{(\frac{d}{dx}cos^{-1}x)∫xdx}]dx\) \(=cos^{-1}x\, \frac{x^2}{2}-∫\frac{-1}{\sqrt{1-x^2}}.\frac{x^2}{2} dx\) \(=\frac{x^2cos^{-1}}{2}-\frac{1}{2}∫\frac{1-x^2-1}{\sqrt{1-x^2}} dx\) \(=\frac{x^2cos^{-1}}{2}-\frac{1}{2}\int{\sqrt{1-x^2}+(\frac{-1}{\sqrt{1-x^2}})}dx\) \(=\frac{x^2cos^{-1}}{2}-\frac{1}{2}\int{\sqrt{1-x^2}+\frac{1}{2}\int(\frac{-1}{\sqrt{1-x^2}})}dx\) \(=\frac{x^2cos^{-1}}{2}-\frac{1}{2}I_1-\frac{1}{2}cos^{-1}x...(1)\) Where,\(I_1=∫\sqrt{1-x^2} dx\) \(⇒I_1=x\sqrt{1-x^2}-∫\frac{d}{dx}\sqrt{1-x^2}∫x.dx\) \(⇒I_1=x\sqrt{1-x^2}-∫\frac{-2x}{2\sqrt{1-x^2}}.x dx\) \(⇒I_1=x\sqrt{1-x^2}-∫\frac{-x}{\sqrt{1-x^2}}.x dx\) \(⇒I_1=x\sqrt{1-x^2}-∫\frac{1-x^2-1}{\sqrt{1-x^2}}.x dx\) \(⇒I_1=x\sqrt{1-x^2}-{∫\sqrt{1-x^2} dx+∫\frac{-dx}{\sqrt{1-x^2}}}\) \(⇒I_1=x\sqrt{1-x^2}-[{I_1+cos^{-1}x}]\) \(⇒2I_1=x\sqrt{1-x^2}-cos^{-1}x\) \(∴I_1=\frac{x}{2}\sqrt{1-x^2}-\frac{1}{2}cos^{-1}x\) Substituting in equation(1),we obtain \(I=\frac{xcos^{-1}x}{2}-\frac{1}{2}(\frac{x}{2}\sqrt{1-x^2}-\frac{1}{2}cos^{-1}x)-\frac{1}{2}cos^{-1}x\) \(=\frac{(2x^2-1)}{4}cos^{-1}x-\frac{x}{4}\sqrt{1-x^2}+C\)
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.