The correct answer is: \(=-[\sqrt{1-x^2}cos^{-1}x+x]+C\) Let \(I=∫\frac{xcos^{-1}x}{\sqrt{1-x^2}} dx\) \(I=\frac{-1}{2} ∫\frac{-2x}{\sqrt{1-x^2}}.cos^{-1}xdx\) Taking \(cos^{-1}x\) as first function and\((\frac{-2x}{\sqrt{1-x^2}})\)as second function and integrating by parts, we obtain \(I=\frac{-1}{2}[cos^{-1}x∫\frac{-2x}{\sqrt{1-x^2}} dx-∫{(\frac{d}{dx}cos^{-1}x)∫\frac{-2x}{\sqrt{1-x^2}} dx}]dx]\) \(=\frac{-1}{2}[cos^{-1}x.2\sqrt{1-x^2}-∫\frac{-1}{\sqrt{1-x^2}}.2\sqrt{1-x^2} dx]\) \(=\frac{-1}{2}[2\sqrt{1-x^2}\,cos^{-1}x+∫2 dx]\) \(=\frac{-1}{2}[2\sqrt{1-x^2}cos^{-1}x+2x]+C\) \(=-[\sqrt{1-x^2}cos^{-1}x+x]+C\)
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.