∫ (x2 - 1)dx/(x3(2x4 - 2x2 1)1/2) = ?
1. Simplify the Integrand:
∫ (x² - 1) dx / (x³ √(2x⁴ - 2x² + 1))
2. Factor out x⁴ from under the square root:
∫ (x² - 1) dx / (x³ √(x⁴(2 - 2/x² + 1/x⁴)))
∫ (x² - 1) dx / (x³ * x² √(2 - 2/x² + 1/x⁴))
∫ (x² - 1) dx / (x⁵ √(2 - 2/x² + 1/x⁴))
3. Divide numerator and denominator by x⁴:
∫ (1/x² - 1/x⁴) dx / (x √(2 - 2/x² + 1/x⁴))
4. Make a Substitution:
Let u = 2 - 2/x² + 1/x⁴
Then du = (4/x³ - 4/x⁵) dx = 4(1/x³ - 1/x⁵) dx
Notice that (1/x² - 1/x⁴) dx = (1/4) * (4/x³ - 4/x⁵) * x dx = (1/4) du * x
Also, from u = 2 - 2/x² + 1/x⁴, multiply both sides by x^4, giving u x^4 = 2x^4 - 2x^2 + 1.
Then, x = sqrt( (2x^4 - 2x^2 + 1)/u ) = sqrt ( (2- 2/x^2 + 1/x^4 ) x^4 / u ) = sqrt (ux^4/u)
We need to rewrite (1/x^2 - 1/x^4) dx = 1/4 (4/x^3 - 4/x^5) dx.
Multiply numerator and denominator by x.
∫ (x(1/x^2 - 1/x^4)) dx / (x^2 √(2 - 2/x² + 1/x⁴))
∫ (1/x - 1/x^3) dx / (x^2 √(2 - 2/x² + 1/x⁴))
Let v = 1/x^2. dv = -2/x^3 dx. (1/x - 1/x^3) = (1/x - dv/(-2))
Then let's go back and use u = 2 - 2/x² + 1/x⁴.
∫ (1/x² - 1/x⁴) dx / (x √(2 - 2/x² + 1/x⁴)) = ∫ (x² - 1)/(x^5 sqrt(2 - 2/x^2 + 1/x^4) ) dx
Rewrite the numerator as:
(x^2 - 1) / x^5 = 1/x^3 - 1/x^5
∫ (1/x^3 - 1/x^5) dx / √(2 - 2/x² + 1/x⁴)
Let u = 2 - 2/x² + 1/x⁴
du = (4/x³ - 4/x⁵) dx
(1/4) du = (1/x³ - 1/x⁵) dx
∫ (1/4) du / √u = (1/4) ∫ u^(-1/2) du = (1/4) * 2 * u^(1/2) + C = (1/2) √u + C
(1/2) √(2 - 2/x² + 1/x⁴) + C = (1/2) √((2x⁴ - 2x² + 1) / x⁴) + C
= (1/2x²) √(2x⁴ - 2x² + 1) + C
5. Final Answer:
(1/2x²)√(2x⁴ - 2x² + 1) + C
Find the area of the region (in square units) enclosed by the curves: \[ y^2 = 8(x+2), \quad y^2 = 4(1-x) \] and the Y-axis.
Evaluate the integral: \[ I = \int_{\frac{1}{\sqrt[5]{32}}}^{\frac{1}{\sqrt[5]{31}}} \frac{1}{\sqrt[5]{x^{30} + x^{25}}} dx. \]
Evaluate the integral: \[ I = \int_{-3}^{3} |2 - x| dx. \]
Evaluate the integral: \[ I = \int_{-\pi}^{\pi} \frac{x \sin^3 x}{4 - \cos^2 x} dx. \]
If \[ \int \frac{3}{2\cos 3x \sqrt{2} \sin 2x} dx = \frac{3}{2} (\tan x)^{\beta} + \frac{3}{10} (\tan x)^4 + C \] then \( A = \) ?
Given below is the list of the different methods of integration that are useful in simplifying integration problems:
If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:
∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C
Here f(x) is the first function and g(x) is the second function.
The formula to integrate rational functions of the form f(x)/g(x) is:
∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx
where
f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and
g(x) = q(x).s(x)
Hence the formula for integration using the substitution method becomes:
∫g(f(x)) dx = ∫g(u)/h(u) du
This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,
∫g'(f(x)) f'(x) dx = g(f(x)) + C