\( \int \frac{(x^2 - 1)}{x^3 \sqrt{2x^4 - 2x^2 + 1}} \, dx = ? \)
1. Simplify the Integrand:
We are given the integral:
\[
\int \frac{(x^2 - 1)}{x^3 \sqrt{2x^4 - 2x^2 + 1}} \, dx
\]
2. Factor out \( x^4 \) from under the square root:
Start by factoring out \( x^4 \) from under the square root:
\[
\int \frac{(x^2 - 1)}{x^3 \sqrt{x^4(2 - \frac{2}{x^2} + \frac{1}{x^4})}} \, dx
\]
Simplifying:
\[
\int \frac{(x^2 - 1)}{x^3 \cdot x^2 \sqrt{2 - \frac{2}{x^2} + \frac{1}{x^4}}} \, dx = \int \frac{(x^2 - 1)}{x^5 \sqrt{2 - \frac{2}{x^2} + \frac{1}{x^4}}} \, dx
\]
3. Divide numerator and denominator by \( x^4 \):
Next, divide both the numerator and the denominator by \( x^4 \):
\[
\int \frac{\left( \frac{1}{x^2} - \frac{1}{x^4} \right)}{x \sqrt{2 - \frac{2}{x^2} + \frac{1}{x^4}}} \, dx
\]
4. Make a Substitution:
Let \( u = 2 - \frac{2}{x^2} + \frac{1}{x^4} \), so that:
\[
du = \left( \frac{4}{x^3} - \frac{4}{x^5} \right) dx = 4 \left( \frac{1}{x^3} - \frac{1}{x^5} \right) dx
\]
Notice that:
\[
\left( \frac{1}{x^2} - \frac{1}{x^4} \right) dx = \frac{1}{4} \cdot \left( \frac{4}{x^3} - \frac{4}{x^5} \right) x \, dx = \frac{1}{4} du \cdot x
\]
Now, substituting into the integral: \[ \int \frac{x \left( \frac{1}{x^2} - \frac{1}{x^4} \right)}{x^2 \sqrt{2 - \frac{2}{x^2} + \frac{1}{x^4}}} \, dx = \int \frac{\left( \frac{1}{x} - \frac{1}{x^3} \right)}{x^2 \sqrt{2 - \frac{2}{x^2} + \frac{1}{x^4}}} \, dx \]
5. Use Substitution \( v = \frac{1}{x^2} \):
Let \( v = \frac{1}{x^2} \), and differentiate to get:
\[
dv = -\frac{2}{x^3} dx
\]
Now, rewrite the integrand as:
\[
\left( \frac{1}{x} - \frac{1}{x^3} \right) = \left( \frac{1}{x} - \frac{dv}{-2} \right)
\]
Substituting back into the integral:
\[
\int \frac{1}{x^2} - \frac{1}{x^4} \, dx / \left( x \sqrt{2 - \frac{2}{x^2} + \frac{1}{x^4}} \right)
\]
6. Final Substitution and Simplification:
At this stage, simplify the expression further with proper substitutions:
\[
\int \left( \frac{1}{x^2} - \frac{1}{x^4} \right) dx / \left( x \sqrt{2 - \frac{2}{x^2} + \frac{1}{x^4}} \right)
\]
Leading to a more simplified integral that can be solved via standard integration techniques.
Final Answer:
The simplified integral is:
\[
\frac{1}{2x^2} \sqrt{2x^4 - 2x^2 + 1} + C
\]
The integral $ \int_0^1 \frac{1}{2 + \sqrt{2e}} \, dx $ is:
Given below is the list of the different methods of integration that are useful in simplifying integration problems:
If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:
∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C
Here f(x) is the first function and g(x) is the second function.
The formula to integrate rational functions of the form f(x)/g(x) is:
∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx
where
f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and
g(x) = q(x).s(x)
Hence the formula for integration using the substitution method becomes:
∫g(f(x)) dx = ∫g(u)/h(u) du
This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,
∫g'(f(x)) f'(x) dx = g(f(x)) + C