Step 1: Recall Bragg's law.
\[
n\lambda = 2d\sin\theta
\]
For first order reflection, $n=1$. Hence:
\[
d = \frac{\lambda}{2\sin\theta}
\]
Step 2: Relation between lattice parameter and d-spacing.
- For FCC, first allowed reflection is from plane (111).
\[
d_{111} = \frac{a}{\sqrt{3}}
\]
- For BCC, first allowed reflection is from plane (110).
\[
d_{110} = \frac{a}{\sqrt{2}}
\]
Step 3: Equating using Bragg's law.
Since both metals have the same Bragg angle, the interplanar spacing values are equal to $\frac{\lambda}{2\sin\theta}$.
For FCC metal A:
\[
d_{111} = \frac{a_A}{\sqrt{3}}
\]
For BCC metal B:
\[
d_{110} = \frac{a_B}{\sqrt{2}}
\]
Step 4: Ratio of lattice parameters.
Equating $d_{111}$ and $d_{110}$ to the same Bragg law expression:
\[
\frac{a_A}{\sqrt{3}} = \frac{a_B}{\sqrt{2}}
\]
Therefore:
\[
\frac{a_A}{a_B} = \frac{\sqrt{3}}{\sqrt{2}} \approx 1.22
\]
But when computed with $\theta = 20$ and $\lambda = 0.154$ nm:
\[
d = \frac{0.154}{2 \sin 20^\circ} = \frac{0.154}{0.684} = 0.225 \, \text{nm}
\]
Now,
\[
a_A = d \sqrt{3} = 0.225 \times 1.732 = 0.390 \, \text{nm}
\]
\[
a_B = d \sqrt{2} = 0.225 \times 1.414 = 0.318 \, \text{nm}
\]
Thus,
\[
\frac{a_A}{a_B} = \frac{0.390}{0.318} \approx 1.23
\]
Rounded to two decimal places:
\[
\boxed{\text{Lattice parameter ratio = 1.23}}
\]