Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2\ is :
A differential equation having the formation f(x,y)dy = g(x,y)dx is known to be homogeneous differential equation if the degree of f(x,y) and g(x, y) is entirely same. A function of form F(x,y), written in the formation of kn F(x,y) is called a homogeneous function of degree n, for k≠0. Therefore, f and g are the homogeneous functions of the same degree of x and y. Here, the change of variable y = ux directs to an equation of the form;
dx/x = h(u) du which could be easily desegregated.
To solve a homogeneous differential equation go through the following steps:-
Given the differential equation of the type