To solve the problem of determining the amount of current change required in circuit X to induce a specific current in circuit Y, we will use the formula for mutual induction:
\[ M = \frac{E}{-\frac{dI}{dt}} \]
where \( M \) is the mutual inductance, \( E \) is the induced EMF in circuit Y, and \( \frac{dI}{dt} \) is the rate of change of current in circuit X.
The induced EMF \( E \) in circuit Y causes a current \( I = 60 \times 10^{-4} \, \text{A} \) to flow through Y with a resistance of \( 4 \, \Omega \). Therefore, using Ohm's Law:
\[ E = I \times R \] \[ E = (60 \times 10^{-4}) \times 4 = 24 \times 10^{-4} \, \text{V} \]
Given that the mutual inductance \( M = 3 \, \text{mH} = 3 \times 10^{-3} \, \text{H} \), we plug these values into the induction formula:
\[ M = \frac{24 \times 10^{-4}}{-\frac{dI_x}{dt}} \] \[ 3 \times 10^{-3} = \frac{24 \times 10^{-4}}{-\frac{dI_x}{dt}} \]
Rearranging for \( \frac{dI_x}{dt} \), we have:
\[ \frac{dI_x}{dt} = -\frac{24 \times 10^{-4}}{3 \times 10^{-3}} \] \[ \frac{dI_x}{dt} = -8 \, \text{A/s} \]
The current change over the time interval \( \Delta t = 0.02 \, \text{s} \) is:
\[ \Delta I_x = \frac{dI_x}{dt} \times \Delta t \] \[ \Delta I_x = -8 \times 0.02 = -0.16 \, \text{A} \]
Since we are interested in magnitude, \( \Delta I_x = 0.16 \, \text{A} \). Thus, the amount of current change required in circuit X is \( 0.16 \, \text{A} \).
\( {Induced EMF in circuit Y} = M \frac{dI_X}{dt}. \)
The induced current \( I_Y \) in circuit Y is related to the induced EMF by Ohm's law:\( I_Y = \frac{{Induced EMF in circuit Y}}{R_Y}. \)
Thus, we have:\( I_Y = \frac{M \frac{dI_X}{dt}}{R_Y}. \)
Step 1:\( 60 \times 10^{-4} = \frac{(3 \times 10^{-3}) \frac{dI_X}{dt}}{4}. \)
Step 2:\( \frac{dI_X}{dt} = \frac{60 \times 10^{-4} \times 4}{3 \times 10^{-3}} = \frac{240 \times 10^{-4}}{3 \times 10^{-3}} = 0.08 \, {A/sec}. \)
Step 3:\( \Delta I_X = \frac{dI_X}{dt} \times 0.02 = 0.08 \times 0.02 = 0.16 \, {A}. \)
Thus, the amount of current to be changed in circuit X in 0.02 sec is \( 0.16 \, {A} \).