"The given differential equation is: \(x^5\frac{dy}{dx}=-y^5\) \(⇒\frac{dy}{y^5}=\frac{-dx}{x^5}\) \(⇒\frac{dx}{x^5}+\frac{dy}{y^5}=0\) Integrating both sides,we get: \(\int\frac{dx}{x^5}+∫\frac{dy}{y^5}=k\)(where k is any constant) \(⇒∫x^{-5}dx+∫y^{-5}dy=k\) \(⇒\frac{x^{-4}}{-4}+\frac{y^{-4}}{-4}=k\) \(⇒x^{-4}+y^{-4}=-4k\) \(⇒x^{-4}+y^{-4}=C\,\,\,\,(C=-4k)\) This is the required general solution of the given differential equation.