Step 1: Calculate the sum of the five given marks.
The given marks are 45, 54, 41, 57, and 43. Their sum is:
\[
45 + 54 + 41 + 57 + 43 = 240.
\]
Step 2: Find the sixth test score using the mean.
The mean score for the six tests is 48. The sum of all six marks is:
\[
\text{Sum of six marks} = 48 \times 6 = 288.
\]
Therefore, the sixth test score is:
\[
x_6 = 288 - 240 = 48.
\]
Step 3: Calculate the variance.
The marks are 45, 54, 41, 57, 43, and 48, with the mean \( \mu = 48 \). The variance is calculated as:
\[
\text{Variance} = \frac{1}{6} \sum_{i=1}^{6} (x_i - \mu)^2
\]
Now calculate \( (x_i - 48)^2 \) for each mark:
- \( (45 - 48)^2 = 9 \)
- \( (54 - 48)^2 = 36 \)
- \( (41 - 48)^2 = 49 \)
- \( (57 - 48)^2 = 81 \)
- \( (43 - 48)^2 = 25 \)
- \( (48 - 48)^2 = 0 \)
Thus, the variance is:
\[
\text{Variance} = \frac{9 + 36 + 49 + 81 + 25 + 0}{6} = \frac{200}{6} = \frac{100}{3}.
\]
Step 4: Calculate the standard deviation.
The standard deviation is the square root of the variance:
\[
\text{Standard Deviation} = \sqrt{\frac{100}{3}} = \frac{10}{\sqrt{3}}.
\]