Inverse of the statement:
The inverse of a statement "If \( P \) then \( Q \)" is:
\[
\text{If not } P, \text{ then not } Q.
\]
So, the inverse of the given statement "If \( x<y \), then \( x^2<y^2 \)" is:
\[
\text{If } x \geq y, \text{ then } x^2 \geq y^2.
\]
Contrapositive of the statement:
The contrapositive of a statement "If \( P \) then \( Q \)" is:
\[
\text{If not } Q, \text{ then not } P.
\]
So, the contrapositive of the given statement "If \( x<y \), then \( x^2<y^2 \)" is:
\[
\text{If } x^2 \geq y^2, \text{ then } x \geq y.
\]