(i) A = {x: x is an integer and }
The elements of this set are -2, -1, 0, 1, 2, 3, 4, 5, and 6 only.
Therefore, the given set can be written in roster form as
A = {-2, -1, 0, 1, 2, 3, 4, 5, 6}
(ii) B = {x: x is a natural number less than 6}
The elements of this set are 1, 2, 3, 4, and 5 only.
Therefore, the given set can be written in roster form as
B = {1, 2, 3, 4, 5}
(iii) C = {x: x is a two-digit natural number such that the sum of its digits is 8}
The elements of this set are 17, 26, 35, 44, 53, 62, 71, and 80 only.
Therefore, this set can be written in roster form as
C = {17, 26, 35, 44, 53, 62, 71, 80}
(iv) D = {x: x is a prime number which is a divisor of 60}
2 | 60 |
2 | 30 |
3 | 15 |
5 |
60 = 2 × 2 × 3 × 5
The elements of this set are 2, 3, and 5 only.
Therefore, this set can be written in roster form as D = {2, 3, 5}.
(v) E = The set of all letters in the word TRIGONOMETRY
There are 12 letters in the word TRIGONOMETRY, out of which letters T, R, and O are repeated.
Therefore, this set can be written in roster form as
E = {T, R, I, G, O, N, M, E, Y}
(vi) F = The set of all letters in the word BETTER
There are 6 letters in the word BETTER, out of which letters E and T are repeated.
Therefore, this set can be written in roster form as
F = {B, E, T, R}
What inference do you draw about the behaviour of Ag+ and Cu2+ from these reactions?
In mathematics, a set is a well-defined collection of objects. Sets are named and demonstrated using capital letter. In the set theory, the elements that a set comprises can be any sort of thing: people, numbers, letters of the alphabet, shapes, variables, etc.
Read More: Set Theory
The items existing in a set are commonly known to be either elements or members of a set. The elements of a set are bounded in curly brackets separated by commas.
Read Also: Set Operation
The cardinal number, cardinality, or order of a set indicates the total number of elements in the set.
Read More: Types of Sets