Question:

Write the following cubes in expanded form: 

(i) (2x + 1)3 (ii) (2a – 3b) 3 (iii) [\(\frac{3}{2}\) x + 1]3 (iv) [x - \(\frac{2 }{ 3} \)y]3

Updated On: Nov 20, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i) It is known that, 

(a + b)3 = a3 + b3 + 3ab(a + b) and (a - b)3 = a3 - b3 - 3ab(a - b)

(2x + 1)3 = (2x)3 (1)3 + 3(2x)(1)(2x + 1) = 8x3 + 1 + 6x (2x + 1)

 = 8x3 + 1 + 12x2 + 6x = 8x3 + 12x2 + 6x + 1


(ii) (2a - 3b)3 = (2a)3 - (3b)3 - 3(2a)(3b)(2a - 3b) 

= 8a3 - 27b3 - 18ab (2a - 3b) = 8a3 - 27b3 - 36a2b + 54ab2


(iii) [\(\frac{3 }{ 2}\) x + 1]3 = [\(\frac{3 }{ 2}\) x]3 + (1)3 + 3(\(\frac{3 }{ 2}\)x)(1)(\(\frac{3 }{ 2}\) x + 1) 

\(\frac{27 }{ 8}\) x3 + 1 + \(\frac{9 }{ 2}\)(\(\frac{3 }{ 2}\) x + 1) 

\(\frac{27 }{ 8}\) x3 + 1 + \(\frac{27 }{ 4}\)x2 + \(\frac{9 }{ 2}\)2x 

\(\frac{27 }{ 8}\) x3 + \(\frac{27 }{ 4}\) x2 + \(\frac{9 }{ 2}\) x + 1



(iv) [x - \(\frac{2 }{3}\) y]3 = x3 - (\(\frac{2 }{3}\) y)3 - 3 (x) (\(\frac{2 }{3}\) y)(x - \(\frac{2 }{3}\) y) 

= x3 - \(\frac{8 }{ 27}\) y3 - 2xy (x - \(\frac{2 }{ 3}\) y) 

= x3 - \(\frac{8 }{ 27}\)y3 - 2x2 y + \(\frac{4 }{ 3}\) xy2.

Was this answer helpful?
0
0