Write the following cubes in expanded form:
(i) (2x + 1)3 (ii) (2a – 3b) 3 (iii) [\(\frac{3}{2}\) x + 1]3 (iv) [x - \(\frac{2 }{ 3} \)y]3
(i) It is known that,
(a + b)3 = a3 + b3 + 3ab(a + b) and (a - b)3 = a3 - b3 - 3ab(a - b)
(2x + 1)3 = (2x)3 (1)3 + 3(2x)(1)(2x + 1) = 8x3 + 1 + 6x (2x + 1)
= 8x3 + 1 + 12x2 + 6x = 8x3 + 12x2 + 6x + 1
(ii) (2a - 3b)3 = (2a)3 - (3b)3 - 3(2a)(3b)(2a - 3b)
= 8a3 - 27b3 - 18ab (2a - 3b) = 8a3 - 27b3 - 36a2b + 54ab2
(iii) [\(\frac{3 }{ 2}\) x + 1]3 = [\(\frac{3 }{ 2}\) x]3 + (1)3 + 3(\(\frac{3 }{ 2}\)x)(1)(\(\frac{3 }{ 2}\) x + 1)
= \(\frac{27 }{ 8}\) x3 + 1 + \(\frac{9 }{ 2}\)(\(\frac{3 }{ 2}\) x + 1)
= \(\frac{27 }{ 8}\) x3 + 1 + \(\frac{27 }{ 4}\)x2 + \(\frac{9 }{ 2}\)2x
= \(\frac{27 }{ 8}\) x3 + \(\frac{27 }{ 4}\) x2 + \(\frac{9 }{ 2}\) x + 1
(iv) [x - \(\frac{2 }{3}\) y]3 = x3 - (\(\frac{2 }{3}\) y)3 - 3 (x) (\(\frac{2 }{3}\) y)(x - \(\frac{2 }{3}\) y)
= x3 - \(\frac{8 }{ 27}\) y3 - 2xy (x - \(\frac{2 }{ 3}\) y)
= x3 - \(\frac{8 }{ 27}\)y3 - 2x2 y + \(\frac{4 }{ 3}\) xy2.
Factorise each of the following:
(i) 8a 3 + b 3 + 12a 2b + 6ab2
(ii) 8a 3 – b 3 – 12a 2b + 6ab2
(iii) 27 – 125a 3 – 135a + 225a 2
(iv) 64a 3 – 27b 3 – 144a 2b + 108ab2
(v) 27p 3 – \(\frac{1}{ 216}\) – \(\frac{9 }{ 2}\) p2 + \(\frac{1 }{4}\) p
Expand each of the following, using suitable identities:
(i) (x + 2y + 4z) 2 (ii) (2x – y + z) 2 (iii) (–2x + 3y + 2z) 2
(iv) (3a – 7b – c) 2 (v) (–2x + 5y – 3z) 2 (vi) [ \(\frac{1 }{ 4}\) a - \(\frac{1 }{ 2}\) b + 1]2
In Fig. 9.26, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠ BEC = 130° and ∠ ECD = 20°. Find ∠ BAC.
Look up the dictionary entries for the words sympathy, familiarity, comfort, care, and surprise. Use the information given in the dictionary and complete the table.
Noun, Adjective, Adverb, Verb, Meaning:
sympathy
familiarity
comfort
care
surprise