We use the identity:
\[
a^3 + b^3 + c^3 - 3abc = (a + b + c)\left(a^2 + b^2 + c^2 - ab - bc - ca\right)
\]
Given \(a + b + c = 11\) and \(ab + bc + ca = 20\), we calculate:
\[
a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + bc + ca) = 11^2 - 2 \cdot 20 = 121 - 40 = 81
\]
Now, we find:
\[
a^3 + b^3 + c^3 - 3abc = 11 \times (81 - 20) = 11 \times 61 = 671
\]
Thus, the correct answer is 671.