Answer:
ΔG < 0 (Negative Gibbs free energy change)
Explanation:
The change in Gibbs free energy is given by: \[ \Delta G = \Delta H - T\Delta S \]
- A process is **spontaneous** when ΔG is **negative**. - It is **non-spontaneous** when ΔG is **positive**. - It is at **equilibrium** when ΔG = 0.
The internal energy of air in $ 4 \, \text{m} \times 4 \, \text{m} \times 3 \, \text{m} $ sized room at 1 atmospheric pressure will be $ \times 10^6 \, \text{J} $. (Consider air as a diatomic molecule)
Two vessels A and B are connected via stopcock. Vessel A is filled with a gas at a certain pressure. The entire assembly is immersed in water and allowed to come to thermal equilibrium with water. After opening the stopcock the gas from vessel A expands into vessel B and no change in temperature is observed in the thermometer. Which of the following statement is true? 
$\gamma_A$ is the specific heat ratio of monoatomic gas A having 3 translational degrees of freedom. $\gamma_B$ is the specific heat ratio of polyatomic gas B having 3 translational, 3 rotational degrees of freedom and 1 vibrational mode. If \[ \frac{\gamma_A}{\gamma_B} = \left( 1 + \frac{1}{n} \right) \] then the value of \( n \) is ___.