Applied History refers to the utilization of historical knowledge, methods, and lessons for addressing current challenges. It involves drawing insights from the past to inform decision-making and problem-solving in the present. This approach connects historical lessons with contemporary issues and future planning, making history relevant to modern society.
Applied History bridges the gap between past experiences and present-day challenges. It helps analyze historical events, behaviors, and systems to inform decisions in fields like politics, economy, environment, and urban planning. Understanding patterns of past successes and failures aids in better forecasting and future planning.
Applied History helps policymakers and society avoid repeating past mistakes and use proven strategies to build a sustainable and equitable future. It ensures decisions are informed by the lessons of history.
\[ \text{Applied History = Learning from the Past to Solve Present and Future Problems.} \]
Complete the following concept map :
Complete the following activity to prove that the sum of squares of diagonals of a rhombus is equal to the sum of the squares of the sides.
Given: PQRS is a rhombus. Diagonals PR and SQ intersect each other at point T.
To prove: PS\(^2\) + SR\(^2\) + QR\(^2\) + PQ\(^2\) = PR\(^2\) + QS\(^2\)
Activity: Diagonals of a rhombus bisect each other.
In \(\triangle\)PQS, PT is the median and in \(\triangle\)QRS, RT is the median.
\(\therefore\) by Apollonius theorem,
\[\begin{aligned} PQ^2 + PS^2 &= \boxed{\phantom{X}} + 2QT^2 \quad \dots \text{(I)} \\ QR^2 + SR^2 &= \boxed{\phantom{X}} + 2QT^2 \quad \dots \text{(II)} \\ \text{Adding (I) and (II),} \quad PQ^2 + PS^2 + QR^2 + SR^2 &= 2(PT^2 + \boxed{\phantom{X}}) + 4QT^2 \\ &= 2(PT^2 + \boxed{\phantom{X}}) + 4QT^2 \quad (\text{RT = PT}) \\ &= 4PT^2 + 4QT^2 \\ &= (\boxed{\phantom{X}})^2 + (2QT)^2 \\ \therefore \quad PQ^2 + PS^2 + QR^2 + SR^2 &= PR^2 + \boxed{\phantom{X}} \\ \end{aligned}\]