Write down Einstein's photoelectric equation. Photons of energies 1 eV and 2.5 eV respectively are incident on a metal plate of work function 0.5 eV. If maximum kinetic energies of emitted photoelectrons are \( k_1 \) and \( k_2 \) respectively and their velocities are \( v_1 \) and \( v_2 \), then find the magnitudes of (i) \( k_1/k_2 \) and (ii) \( v_1/v_2 \).
Einstein's Photoelectric Equation: \[ K_{\max} = h\nu - \phi \]
Step 1: Using given data: \[ k_1 = 1 - 0.5 = 0.5 \, \text{eV} \] \[ k_2 = 2.5 - 0.5 = 2.0 \, \text{eV} \] \[ \frac{k_1}{k_2} = \frac{0.5}{2.0} = \frac{1}{4} \] \[ \boxed{\frac{k_1}{k_2} = \frac{1}{4}} \]
Step 2: Since kinetic energy is proportional to the square of velocity: \[ \frac{v_1}{v_2} = \sqrt{\frac{k_1}{k_2}} \] \[ = \sqrt{\frac{1}{4}} = \frac{1}{2} \] \[ \boxed{\frac{v_1}{v_2} = \frac{1}{2}} \]
Which of the following statements are correct, if the threshold frequency of caesium is $ 5.16 \times 10^{14} \, \text{Hz} $?
Translate the following passage into English: to be translated
Translate the following into English:
Translate the following passage into English: