Step 1: Recall the definition of variance.
\( \text{Var}(Z) = E[(Z - E[Z])^2] \). Let \( Z = X-Y \).
Step 2: Apply the definition to \( \text{Var}(X-Y) \).
\( E[X-Y] = E[X] - E[Y] \). Let \( \mu_X = E[X] \) and \( \mu_Y = E[Y] \).
\[ \text{Var}(X-Y) = E[((X-Y) - (\mu_X - \mu_Y))^2] \]
\[ = E[((X-\mu_X) - (Y-\mu_Y))^2] \]
Step 3: Expand the squared term. \[ = E[(X-\mu_X)^2 - 2(X-\mu_X)(Y-\mu_Y) + (Y-\mu_Y)^2] \]
Step 4: Use the linearity of expectation. \[ = E[(X-\mu_X)^2] - 2E[(X-\mu_X)(Y-\mu_Y)] + E[(Y-\mu_Y)^2] \]
Step 5: Recognize the definitions of variance and covariance. \[ E[(X-\mu_X)^2] = \text{Var}(X) \] \[ E[(Y-\mu_Y)^2] = \text{Var}(Y) \] \[ E[(X-\mu_X)(Y-\mu_Y)] = \text{Cov}(X,Y) \] Substituting these back gives the final formula: \[ \text{Var}(X-Y) = \text{Var}(X) + \text{Var}(Y) - 2\text{Cov}(X,Y) \]
The coefficient of correlation of the above two data series will be equal to \(\underline{\hspace{1cm}}\)
\[\begin{array}{|c|c|} \hline X & Y \\ \hline -3 & 9 \\ -2 & 4 \\ -1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ \hline \end{array}\]
Identify the median class for the following grouped data:
\[\begin{array}{|c|c|} \hline \textbf{Class interval} & \textbf{Frequency} \\ \hline 5-10 & 5 \\ 10-15 & 15 \\ 15-20 & 22 \\ 20-25 & 25 \\ 25-30 & 10 \\ 30-35 & 3 \\ \hline \end{array}\]
Match the LIST-I (Spectroscopy) with LIST-II (Application)
LIST-I | LIST-II |
---|---|
A. Visible light spectroscopy | III. Identification on the basis of color |
B. Fluorescence spectroscopy | IV. Identification on the basis of fluorophore present |
C. FTIR spectroscopy | I. Identification on the basis of absorption in infrared region |
D. Mass Spectroscopy | II. Identification on the basis of m/z ion |
Match the LIST-I with LIST-II
LIST-I | LIST-II |
---|---|
A. Forensic Psychiatry | III. Behavioural pattern of criminal |
B. Forensic Engineering | IV. Origin of metallic fracture |
C. Forensic Odontology | I. Bite marks analysis |
D. Computer Forensics | II. Information derived from digital devices |
Match the LIST-I with LIST-II
LIST-I | LIST-II |
---|---|
A. Calvin Goddard | II. Forensic Ballistics |
B. Karl Landsteiner | III. Blood Grouping |
C. Albert Osborn | IV. Document examination |
D. Mathieu Orfila | I. Forensic Toxicology |
Match the LIST-I (Evidence, etc.) with LIST-II (Example, Construction etc.)
LIST-I | LIST-II |
---|---|
A. Biological evidence | IV. Blood |
B. Latent print evidence | III. Fingerprints |
C. Trace evidence | II. Soil |
D. Digital evidence | I. Cell phone records |
Match the LIST-I with LIST-II
LIST-I | LIST-II |
---|---|
A. Ridges | III. The raised portion of the friction skin of the fingers |
B. Type Lines | I. Two most inner ridges which start parallel, diverge and surround or tend to surround the pattern area |
C. Delta | IV. The ridge characteristics nearest to the point of divergence of type lines |
D. Enclosure | II. A single ridge bifurcates and reunites to enclose some space |