Step 1: Observe the pattern of the sequence.
The terms given are:
\[
3,\; 7,\; 15,\; x,\; 63,\; 127,\; 255
\]
Notice:
\[
3 = 2^2 - 1,\quad 7 = 2^3 - 1,\quad 15 = 2^4 - 1
\]
So, the terms appear to follow the form:
\[
2^n - 1
\]
Step 2: Verify later terms.
\[
63 = 2^6 - 1, \quad 127 = 2^7 - 1, \quad 255 = 2^8 - 1
\]
This confirms the sequence pattern:
\[
2^2 - 1,\; 2^3 - 1,\; 2^4 - 1,\; 2^5 - 1,\; 2^6 - 1,\; 2^7 - 1,\; 2^8 - 1
\]
Step 3: Identify the missing term.
The missing term corresponds to $2^5 - 1$:
\[
2^5 - 1 = 32 - 1 = 31
\]
\[
\boxed{31}
\]