Step 1: Check relation for \(X(i)\).
At \(i=0\), \(X(0)=20\). For \(i=1\):
\[
X(1)=X(0)+I(1)=20+(-4)=16
\]
Matches given. For \(i=2\):
\[
X(2)=X(1)+I(2)=16+10=26
\]
Correct. For \(i=3\):
\[
X(3)=X(2)+I(3)=26+15=41
\]
Matches perfectly. Thus, \(X(i)=X(i-1)+I(i)\).
Step 2: Check relation for \(Y(i)\).
At \(i=0\), \(Y(0)=20\). For \(i=1\):
\[
Y(1)=Y(0)\times I(1)=20 \times (-4)=-80
\]
Correct. For \(i=2\):
\[
Y(2)=Y(1)\times I(2)=-80 \times 10=-800
\]
Correct. For \(i=3\):
\[
Y(3)=Y(2)\times I(3)=-800 \times 15=-12000
\]
Matches exactly.
Step 3: Conclude.
Both conditions for \(X(i)\) and \(Y(i)\) match option (A).
\[
\boxed{X(i)=X(i-1)+I(i), \quad Y(i)=Y(i-1)I(i)}
\]