Step 1: Characteristic equation approach.
Eigenvalues \(\lambda\) satisfy:
\[
\det(A - \lambda I) = 0
\]
For eigenvalues 1 and 6, the polynomial should be \((\lambda-1)(\lambda-6) = \lambda^2 - 7\lambda + 6\).
Step 2: Use trace and determinant shortcut.
For a \(2 \times 2\) matrix:
\[
\text{Trace} = \lambda_1 + \lambda_2 = 1+6 = 7, \quad
\det = \lambda_1 \lambda_2 = 6.
\]
Step 3: Check options.
- (A) Trace = \(5+2=7\). Det = \(5\cdot2 - (-2)(-2) = 10-4=6\). Matches perfectly
- (B) Trace = \(3+2=5\), Det = \(6-2=4\). Wrong.
- (C) Trace = \(3+2=5\), Det = \(6-1=5\). Wrong.
- (D) Trace = \(2+3=5\), Det = \(6-1=5\). Wrong.
Step 4: Conclude.
Matrix (A) alone has trace 7 and determinant 6, hence eigenvalues 1 and 6.
\[
\boxed{\begin{bmatrix} 5 & -2
-2 & 2 \end{bmatrix}}
\]