Step 1: As \(x \to 0\), numerator \(2x \to 0\) and denominator \(e^x - 1 \to 0\).
Thus, the limit is of the form \(\frac{0}{0}\), so L'Hôpital's Rule can be applied.
Step 2: Differentiate numerator and denominator:
\[
\lim_{x \to 0} \frac{2x}{e^x - 1}
= \lim_{x \to 0} \frac{(2)'}{(e^x - 1)'}
= \lim_{x \to 0} \frac{2}{e^x}.
\]
Step 3: Evaluate at \(x=0\):
\[
\frac{2}{e^0} = \frac{2}{1} = 2.
\]
\[
\boxed{2}
\]