Step 1: Differentiating each expression
1. For \( \frac{d}{dx} \left[ {Sec}^{-1} (\cosh x) \right] \): \[ \frac{d}{dx} \left[ {Sec}^{-1} (\cosh x) \right] = \frac{1}{\cosh x \sqrt{\cosh^2 x - 1}} \cdot \sinh x. \] Since \( \cosh^2 x - 1 = \sinh^2 x \), we get: \[ = \frac{\sinh x}{\cosh x \sinh x} = \frac{1}{\cosh x} = {sech } x. \] Thus, (1) is true. 2. For \( \frac{d}{dx} \left[ {Cos}^{-1} ({sech } x) \right] \): \[ \frac{d}{dx} \left[ {Cos}^{-1} ({sech } x) \right] = \frac{-1}{\sqrt{1 - {sech}^2 x}} \cdot (-{sech } x \tanh x). \] Since \( 1 - {sech}^2 x = -\tanh^2 x \), we get: \[ = \frac{{sech } x \tanh x}{\tanh x} = {sech } x. \] Thus, (2) is true. 3. For \( \frac{d}{dx} \left[ {Tan}^{-1} (\sinh x) \right] \): \[ \frac{1}{1 + \sinh^2 x} \cdot \cosh x. \] Since \( 1 + \sinh^2 x = \cosh^2 x \), we get: \[ = \frac{\cosh x}{\cosh^2 x} = \frac{1}{\cosh x} = {sech } x. \] Thus, (3) is true. 4. For \( \frac{d}{dx} \left[ {Tan}^{-1} (\tan \frac{x}{2}) \right] \): Since \( {Tan}^{-1} (\tan \frac{x}{2}) \) simplifies to \( \frac{x}{2} \) for values where it is defined, its derivative is: \[ \frac{d}{dx} \left( \frac{x}{2} \right) = \frac{1}{2}. \] Since \( \frac{1}{2} \neq {sech } x \), this statement is false.
Step 2: Conclusion The false statement is: \[ \frac{d}{dx} \left[ {Tan}^{-1} (\tan \frac{x}{2}) \right] = {sech } x. \]
Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?
What are \(X\) and \(Y\) respectively in the following reaction?