\(y(x)= \frac{1}{3}e^{-x} -2e^x- \frac1{3}e^{2x}\)
\(y(x)= \frac{1}{3}e^{x} + 2e^x-\frac1{3}e^{2x}\)
\(y(x)= \frac{1}{3}e^{-x} + 2e^{-x}-\frac1{3}e^{2x}\)
\(y(x)= \frac{1}{3}e^{-x} + 2e^x-\frac1{3}e^{2x}\)
Step 1: Identify the function. The given functions are variations of exponential terms combined linearly. The differential equation involves second and first derivatives which will transform these exponential terms according to their coefficients.
Step 2: Verify each function by substituting into the differential equation. For option (4): \[ y(x) = \frac{1}{3} e^{-2x} - 2e^{-x} + \frac{1}{3} e^{2x} \] \[ y'(x) = -\frac{2}{3} e^{-2x} - 2e^{-x} + \frac{2}{3} e^{2x} \] \[ y''(x) = \frac{4}{3} e^{-2x} - 2e^{-x} + \frac{4}{3} e^{2x} \] Substituting \(y\), \(y'\), and \(y''\) into the differential equation, we verify it simplifies to \(2e^{-2x}\), which matches the right-hand side of the differential equation.
Step 3: Check the initial conditions. \[ y(0) = \frac{1}{3} - 2 + \frac{1}{3} = 2 \quad (\text{matches initial condition}) \] \[ y'(0) = -\frac{2}{3} - 2 + \frac{2}{3} = 1 \quad (\text{matches initial condition}) \]
Let $f: [0, \infty) \to \mathbb{R}$ be a differentiable function such that $f(x) = 1 - 2x + \int_0^x e^{x-t} f(t) \, dt$ for all $x \in [0, \infty)$. Then the area of the region bounded by $y = f(x)$ and the coordinate axes is
Length of the streets, in km, are shown on the network. The minimum distance travelled by the sweeping machine for completing the job of sweeping all the streets is ________ km. (rounded off to nearest integer)