Question:

Which one is the solution y(x) for the following ordinary differential equation and the specified boundary conditionmys?
\(\frac{d^2y}{dx^2} -3 \frac{dy}{dx}+2y = 2e ^{-x}; y(0) =2; (\frac{dy}{dx}_{x=0})=1\)

Updated On: Jul 9, 2024
  • \(y(x)= \frac{1}{3}e^{-x} -2e^x- \frac1{3}e^{2x}\)

  • \(y(x)= \frac{1}{3}e^{x} + 2e^x-\frac1{3}e^{2x}\)

  • \(y(x)= \frac{1}{3}e^{-x} + 2e^{-x}-\frac1{3}e^{2x}\)

  • \(y(x)= \frac{1}{3}e^{-x} + 2e^x-\frac1{3}e^{2x}\)

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The correct answer is (C) : Inversion
Was this answer helpful?
0
0

Questions Asked in GATE ES exam

View More Questions