To compare terms like \( a^{1/n} \), use logarithms:
Let \( y = a^{1/n} \Rightarrow \log y = \frac{1}{n} \log a \).
Compute values:
\[
\log(2^{1/3}) = \frac{1}{3} \log 2 \approx 0.1003
\log(3^{1/4}) = \frac{1}{4} \log 3 \approx 0.119
\log(4^{1/6}) = \frac{1}{6} \log 4 \approx 0.1002
\log(6^{1/8}) = \frac{1}{8} \log 6 \approx 0.096
\log(10^{1/12}) = \frac{1}{12} \log 10 = 0.0833
\]
So the maximum log value is for option (B). Hence, the largest value is:
\[
\boxed{3^{1/4}}
\]