Which of the given values of x and y make the following pair of matrices equal \(\begin{bmatrix}3x+y&5\\y+1&2-3x\end{bmatrix}=\begin{bmatrix}0&y-2\\8&4\end{bmatrix}\)
\(x=\frac{-1}{3},y=7\)
Not possible to find
\(y=7,x=\frac{-2}{3}\)
\(x=\frac{-1}{3},y=\frac{-2}{3}\)
It is given that \(\begin{bmatrix}3x+y&5\\y+1&2-3x\end{bmatrix}=\begin{bmatrix}0&y-2\\8&4\end{bmatrix}\)
Equating the corresponding elements, we get:
3x+7=0 \(\Rightarrow\)x=\(-\frac{7}{3}\)
5=y-2 \(\Rightarrow\) y=7
y+1=8 \(\Rightarrow\) y=7
2-3x=4 \(\Rightarrow\) x=\(-\frac{2}{3}\)
We find that on comparing the corresponding elements of the two matrices, we get two different values of x, which is not possible.
Hence, it is not possible to find the values of x and y for which the given matrices are equal.
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.