Question:

Which of the given values of x and y make the following pair of matrices equal \(\begin{bmatrix}3x+y&5\\y+1&2-3x\end{bmatrix}=\begin{bmatrix}0&y-2\\8&4\end{bmatrix}\)

Updated On: Aug 24, 2023
  • \(x=\frac{-1}{3},y=7\)

  • Not possible to find

  • \(y=7,x=\frac{-2}{3}\)

  • \(x=\frac{-1}{3},y=\frac{-2}{3}\)

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

It is given that \(\begin{bmatrix}3x+y&5\\y+1&2-3x\end{bmatrix}=\begin{bmatrix}0&y-2\\8&4\end{bmatrix}\)
Equating the corresponding elements, we get:
3x+7=0 \(\Rightarrow\)x=\(-\frac{7}{3}\)
5=y-2 \(\Rightarrow\) y=7
y+1=8 \(\Rightarrow\) y=7
2-3x=4 \(\Rightarrow\) x=\(-\frac{2}{3}\)
We find that on comparing the corresponding elements of the two matrices, we get two different values of x, which is not possible.

Hence, it is not possible to find the values of x and y for which the given matrices are equal. 

Was this answer helpful?
0
0

Concepts Used:

Matrices

Matrix:

A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.

The basic operations that can be performed on matrices are:

  1. Addition of Matrices - The addition of matrices addition can only be possible if the number of rows and columns of both the matrices are the same.
  2. Subtraction of Matrices - Matrices subtraction is also possible only if the number of rows and columns of both the matrices are the same.
  3. Scalar Multiplication - The product of a matrix A with any number 'c' is obtained by multiplying every entry of the matrix A by c, is called scalar multiplication. 
  4. Multiplication of Matrices - Matrices multiplication is defined only if the number of columns in the first matrix and rows in the second matrix are equal. 
  5. Transpose of Matrices - Interchanging of rows and columns is known as the transpose of matrices.