In a MOSFET-based amplifier circuit, the voltage gain of the amplifier depends on the type of configuration used. In this case, we are looking at common source and common gate amplifiers.
- Common Source Amplifier: This is an inverting amplifier configuration. The output voltage is inverted relative to the input voltage. The voltage gain for a common-source amplifier is typically negative, indicating inversion.
- Common Gate Amplifier: This configuration is also an inverting amplifier. The input signal is applied to the gate, and the output is taken from the drain. Similar to the common-source amplifier, the common-gate amplifier produces an inverted output.
Thus, the correct answer is (A) because both common source and common gate amplifiers are inverting amplifiers.
Selected data points of the step response of a stable first-order linear time-invariant (LTI) system are given below. The closest value of the time constant (in seconds) of the system is:
\[ \begin{array}{|c|c|} \hline \textbf{Time (sec)} & \textbf{Output} \\ \hline 0.6 & 0.78 \\ 1.6 & 2.8 \\ 2.6 & 2.98 \\ 10 & 3 \\ \infty & 3 \\ \hline \end{array} \]An ideal low pass filter has frequency response given by \[ H(j\omega) = \begin{cases} 1, & |\omega| \leq 200\pi \\ 0, & \text{otherwise} \end{cases} \] Let \( h(t) \) be its time domain representation. Then h(0) = _________ (round off to the nearest integer).
A controller \( D(s) \) of the form \( (1 + K_D s) \) is to be designed for the plant \[ G(s) = \frac{1000\sqrt{2}}{s(s+10)^2} \] as shown in the figure. The value of \( K_D \) that yields a phase margin of \(45^\circ\) at the gain cross-over frequency of 10 rad/sec is __________ (round off to one decimal place).
Two units, rated at 100 MW and 150 MW, are enabled for economic load dispatch. When the overall incremental cost is 10,000 Rs./MWh, the units are dispatched to 50 MW and 80 MW respectively. At an overall incremental cost of 10,600 Rs./MWh, the power output of the units are 80 MW and 92 MW, respectively. The total plant MW-output (without overloading any unit) at an overall incremental cost of 11,800 Rs./MWh is ___________ (round off to the nearest integer).
Using shunt capacitors, the power factor of a 3-phase, 4 kV induction motor (drawing 390 kVA at 0.77 pf lag) is to be corrected to 0.85 pf lag. The line current of the capacitor bank, in A, is __________ (round off to one decimal place).
Consider the state-space model
\[ \dot{\mathbf{x}}(t) = A \mathbf{x}(t) + B r(t), \quad y(t) = C \mathbf{x}(t) \]
where \( \mathbf{x}(t) \), \( r(t) \), and \( y(t) \) are the state, input, and output, respectively. The matrices \( A \), \( B \), and \( C \) are given below:
\[ A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix} \]
The sum of the magnitudes of the poles is __________ (round off to the nearest integer).