Selected data points of the step response of a stable first-order linear time-invariant (LTI) system are given below. The closest value of the time constant (in seconds) of the system is:
\[ \begin{array}{|c|c|} \hline \textbf{Time (sec)} & \textbf{Output} \\ \hline 0.6 & 0.78 \\ 1.6 & 2.8 \\ 2.6 & 2.98 \\ 10 & 3 \\ \infty & 3 \\ \hline \end{array} \]For a first-order LTI system, the output follows the form:
\[ y(t) = 1 - e^{-\frac{t}{\tau}} \] where \( \tau \) is the time constant. As time approaches infinity, the output reaches its steady-state value (3 in this case).
To estimate the time constant \( \tau \), we can use the given data points:
- At \( t = 0.6 \) sec, the output is 0.78, and at \( t = 1.6 \) sec, the output is 2.8.
- For a first-order system, the output reaches approximately 63% of its final value after \( t = \tau \).
Since the output is approaching the steady-state value of 3, the time constant \( \tau \) can be estimated by observing that the system reaches around 63% of 3 around 1 second. The output is 0.78 at \( t = 0.6 \), and it moves closer to 3 as time increases, confirming that the time constant is closest to 1 second. Thus, the closest value for the time constant is \( \tau = 1 \) second.
An ideal low pass filter has frequency response given by \[ H(j\omega) = \begin{cases} 1, & |\omega| \leq 200\pi \\ 0, & \text{otherwise} \end{cases} \] Let \( h(t) \) be its time domain representation. Then h(0) = _________ (round off to the nearest integer).
A controller \( D(s) \) of the form \( (1 + K_D s) \) is to be designed for the plant \[ G(s) = \frac{1000\sqrt{2}}{s(s+10)^2} \] as shown in the figure. The value of \( K_D \) that yields a phase margin of \(45^\circ\) at the gain cross-over frequency of 10 rad/sec is __________ (round off to one decimal place).
Two units, rated at 100 MW and 150 MW, are enabled for economic load dispatch. When the overall incremental cost is 10,000 Rs./MWh, the units are dispatched to 50 MW and 80 MW respectively. At an overall incremental cost of 10,600 Rs./MWh, the power output of the units are 80 MW and 92 MW, respectively. The total plant MW-output (without overloading any unit) at an overall incremental cost of 11,800 Rs./MWh is ___________ (round off to the nearest integer).
Using shunt capacitors, the power factor of a 3-phase, 4 kV induction motor (drawing 390 kVA at 0.77 pf lag) is to be corrected to 0.85 pf lag. The line current of the capacitor bank, in A, is __________ (round off to one decimal place).
Consider the state-space model
\[ \dot{\mathbf{x}}(t) = A \mathbf{x}(t) + B r(t), \quad y(t) = C \mathbf{x}(t) \]
where \( \mathbf{x}(t) \), \( r(t) \), and \( y(t) \) are the state, input, and output, respectively. The matrices \( A \), \( B \), and \( C \) are given below:
\[ A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix} \]
The sum of the magnitudes of the poles is __________ (round off to the nearest integer).