I) The energy of hydrogen atom in ground state is correctly -13.6 eV, according to Bohr's theory.
II) Using Bohr's radius formula, \( r_n = n^2 a_0 \), where \( a_0 = 0.529 \) Å, for \( n=3 \), the radius is \( 9 \times 0.529 = 4.761 \) Å = 476.1 pm, not 158.7 pm. So II is incorrect.
III) For hydrogen-like ions, the radius decreases as nuclear charge \( Z \) increases. Hence, the radius order is \( {H} (Z=1) >{He}^+ (Z=2) > {Li}^{2+} (Z=3) >{Be}^{3+} (Z=4) \). Statement III is correct.
Ion | Q4+ | Xb+ | Yc+ | Zd+ |
---|---|---|---|---|
Radius (pm) | 53 | 66 | 40 | 100 |
Q4+, Xb+, Yc+, Zd+ are respectively
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Statement-I: In the interval \( [0, 2\pi] \), the number of common solutions of the equations
\[ 2\sin^2\theta - \cos 2\theta = 0 \]
and
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
is two.
Statement-II: The number of solutions of
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
in \( [0, \pi] \) is two.
If \( A \) and \( B \) are acute angles satisfying
\[ 3\cos^2 A + 2\cos^2 B = 4 \]
and
\[ \frac{3 \sin A}{\sin B} = \frac{2 \cos B}{\cos A}, \]
Then \( A + 2B = \ ? \)