A differentiable function is continuous, this statement is true because if a function is differentiable at a point, it implies that it is also continuous at that point. However, the converse is not necessarily true; a continuous function may not be differentiable at every point.
So, the correct option is (D): A differentiable function is continuous.
The value of current \( I \) in the electrical circuit as given below, when the potential at \( A \) is equal to the potential at \( B \), will be _____ A.
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = \frac{4}{3} \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \left( \frac{n_2}{2n_1} \right) \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is …….. cm.
f(x) is said to be differentiable at the point x = a, if the derivative f ‘(a) be at every point in its domain. It is given by
Mathematically, a function is said to be continuous at a point x = a, if
It is implicit that if the left-hand limit (L.H.L), right-hand limit (R.H.L), and the value of the function at x=a exist and these parameters are equal to each other, then the function f is said to be continuous at x=a.
If the function is unspecified or does not exist, then we say that the function is discontinuous.