Step 1: Recall Fourier domain properties.
- Convolution in time domain $\Rightarrow$ Multiplication in frequency domain.
- Crosscorrelation in time domain $\Rightarrow$ Multiplication with the conjugate spectrum in frequency domain.
- Deconvolution in time domain $\Rightarrow$ Division in frequency domain.
- Subtraction in time domain $\Rightarrow$ Subtraction in frequency domain (both magnitude and phase, not phase difference).
Step 2: Phase effect of convolution.
If $x(t) * y(t) \leftrightarrow X(\omega) Y(\omega)$, then the phase spectrum is:
\[
\angle[X(\omega) Y(\omega)] = \angle X(\omega) + \angle Y(\omega)
\]
So convolution results in addition of phases, not subtraction. Thus, Option (A) is incorrect.
Step 3: Phase effect of crosscorrelation.
If $x(t) \star y(t) \leftrightarrow X(\omega) Y^*(\omega)$, then:
\[
\angle[X(\omega) Y^*(\omega)] = \angle X(\omega) - \angle Y(\omega)
\]
This results in subtraction of phases. Hence, Option (B) is correct.
Step 4: Phase effect of deconvolution.
Deconvolution corresponds to division in frequency domain:
\[
\frac{X(\omega)}{Y(\omega)} \quad \Rightarrow \quad \angle\left(\frac{X(\omega)}{Y(\omega)}\right) = \angle X(\omega) - \angle Y(\omega)
\]
This also gives subtraction of phases. Hence, Option (C) is correct.
Step 5: Subtraction in time domain.
If $z(t) = x(t) - y(t)$, then in frequency domain:
\[
Z(\omega) = X(\omega) - Y(\omega)
\]
This is not equivalent to phase subtraction, but a direct spectral subtraction. Hence, Option (D) is incorrect.
Final Answer:
Correct options are (B) and (C).
\[
\boxed{\text{Correct Answer: (B), (C)}}
\]