To determine which molecule has a linear shape, we need to consider the molecular geometry. Molecular geometry is influenced by the number of bond pairs and lone pairs of electrons around the central atom, according to VSEPR (Valence Shell Electron Pair Repulsion) theory.
Let's analyze each molecule:
Based on this analysis, CO2 is the molecule with a linear shape.
Identify the correct orders against the property mentioned:
A. H$_2$O $>$ NH$_3$ $>$ CHCl$_3$ - dipole moment
B. XeF$_4$ $>$ XeO$_3$ $>$ XeF$_2$ - number of lone pairs on central atom
C. O–H $>$ C–H $>$ N–O - bond length
D. N$_2$>O$_2$>H$_2$ - bond enthalpy
Choose the correct answer from the options given below:
For the reaction \( A + B \to C \), the rate law is found to be \( \text{rate} = k[A]^2[B] \). If the concentration of \( A \) is doubled and \( B \) is halved, by what factor does the rate change?