A molecule is paramagnetic if it has unpaired electrons. Oxygen (\( O_2 \)) has two unpaired electrons in its molecular orbital configuration, making it paramagnetic. Other molecules listed (like \( N_2 \) and \( H_2 \)) do not have unpaired electrons, making them diamagnetic.
Thus, the correct answer is (A).
An ideal massless spring \( S \) can be compressed \( 1 \) m by a force of \( 100 \) N in equilibrium. The same spring is placed at the bottom of a frictionless inclined plane inclined at \( 30^\circ \) to the horizontal. A \( 10 \) kg block \( M \) is released from rest at the top of the incline and is brought to rest momentarily after compressing the spring by \( 2 \) m. If \( g = 10 \) m/s\( ^2 \), what is the speed of the mass just before it touches the spring?
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: