The given number \(224\) in radix-5 can be converted to decimal (radix-10) as follows:
\[
224_5 = 2 \cdot 5^2 + 2 \cdot 5^1 + 4 \cdot 5^0 = 50 + 10 + 4 = 64.
\]
Now, check each option:
Option (A):
\(64\) in radix-10 matches the decimal value of \(224_5\). Hence, (A) is correct.
Option (B):
Convert \(100_8\) (radix-8) to decimal:
\[
100_8 = 1 \cdot 8^2 + 0 \cdot 8^1 + 0 \cdot 8^0 = 64.
\]
This matches \(224_5\). Hence, (B) is correct.
Option (C):
Convert \(50_{16}\) (radix-16) to decimal:
\[
50_{16} = 5 \cdot 16^1 + 0 \cdot 16^0 = 80.
\]
This does not match \(224_5\). Hence, (C) is incorrect.
Option (D):
Convert \(121_7\) (radix-7) to decimal:
\[
121_7 = 1 \cdot 7^2 + 2 \cdot 7^1 + 1 \cdot 7^0 = 49 + 14 + 1 = 64.
\]
This matches \(224_5\). Hence, (D) is correct.
Final Answer:
\[
\boxed{\text{(A), (B), (D)}}
\]