For a reaction to be spontaneous at all temperatures, the change in Gibbs free energy (\( \Delta G \)) must be negative for all temperatures.
The expression for \( \Delta G \) is: \[ \Delta G = \Delta H - T\Delta S \] For the reaction to be spontaneous at all temperatures, \( \Delta G \) should be negative. This will happen if: \[ \Delta_r H<0 \quad {and} \quad \Delta_r S>0 \] Thus, option (B) is the correct answer.
An ideal monatomic gas of $ n $ moles is taken through a cycle $ WXYZW $ consisting of consecutive adiabatic and isobaric quasi-static processes, as shown in the schematic $ V-T $ diagram. The volume of the gas at $ W, X $ and $ Y $ points are, $ 64 \, \text{cm}^3 $, $ 125 \, \text{cm}^3 $ and $ 250 \, \text{cm}^3 $, respectively. If the absolute temperature of the gas $ T_W $ at the point $ W $ is such that $ n R T_W = 1 \, J $ ($ R $ is the universal gas constant), then the amount of heat absorbed (in J) by the gas along the path $ XY $ is
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____