Which logic gate is represented by the following combination of logic gates?
Consider the following logic circuit.
The output is Y = 0 when :
An \( \alpha \) particle is scattered from an Au target at rest as shown in the figure. \( D_1 \) and \( D_2 \) are the detectors to detect the scattered \( \alpha \) particle at an angle \( \theta \) and along the beam direction, respectively, as shown. The signals from \( D_1 \) and \( D_2 \) are converted to logic signals and fed to logic gates. When a particle is detected, the signal is 1 and is 0 otherwise. Which one of the following circuits detects the particle scattered at the angle \( \theta \) only?
A logic gate circuit is shown in the figure below. The correct combination for the input \( (P, Q) \) for which the output \( T = 1 \) is:
Two point charges M and N having charges +q and -q respectively are placed at a distance apart. Force acting between them is F. If 30% of charge of N is transferred to M, then the force between the charges becomes:
If the ratio of lengths, radii and Young's Moduli of steel and brass wires in the figure are $ a $, $ b $, and $ c $ respectively, then the corresponding ratio of increase in their lengths would be: