The question asks which law states that the current flowing into a junction must be equal to the current flowing out of it.
- Kirchhoff's Current Law (KCL): This law states that the algebraic sum of currents entering a node (or junction) is equal to zero. In simpler terms, the total current flowing into a junction must equal the total current flowing out of that junction. This is based on the principle of conservation of charge.
- Kirchhoff's Voltage Law (KVL): This law states that the algebraic sum of all voltages around any closed loop in a circuit must equal zero.
- Ohm's Law: This law states the relationship between voltage, current, and resistance: V = IR.
- Faraday's Law: This law describes the relationship between a changing magnetic field and the electric field it induces.
The description perfectly matches Kirchhoff's Current Law (KCL).
The law that states that the current flowing into a junction must be equal to the current flowing out of it is Kirchhoff's Current Law (KCL).
Two p-n junction diodes \(D_1\) and \(D_2\) are connected as shown in the figure. \(A\) and \(B\) are input signals and \(C\) is the output. The given circuit will function as a _______. 
In the circuit with ideal devices, the power MOSFET is operated with a duty cycle of 0.4 in a switching cycle with \( I = 10 \, {A} \) and \( V = 15 \, {V} \). The power delivered by the current source, in W, is: \[ {(round off to the nearest integer).} \] 
The op-amps in the following circuit are ideal. The voltage gain of the circuit is __________ (round off to the nearest integer). 
The switch (S) closes at \( t = 0 \) sec. The time, in sec, the capacitor takes to charge to 50 V is ___________ (round off to one decimal place).