(A) The extraction of aluminum is achieved through the Hall-Héroult process, where Al2O3 is obtained as a precipitate by bubbling CO2 through a solution of sodium aluminate, resulting in the reaction:
\(2\text{Na}[ \text{Al}(\text{OH})_4](\text{aq.}) + \text{CO}_2 \rightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + 2\text{Al}(\text{OH})_3(\downarrow) \text{ or } \text{Al}_2\text{O}_3 \cdot 2\text{H}_2\text{O} (\text{ppt})\)
(B) The electrolytic reduction of pure alumina occurs in a steel box lined with carbon (cathode), along with the presence of cryolite (Na3AlF6) and fluorspar (CaF2), which decrease the melting point and enhance the electrolyte's conductivity.
(C) In the electrolysis process of the Hall-Héroult method, graphite rods serve as anodes. At the cathode, aluminum ions are reduced:
\(\text{Al}^{3+} + 3e^- \rightarrow \text{Al}\)
At the anode, the liberated oxygen reacts with the carbon of the anode to form CO and CO2:
\(\text{C} + \text{O}_2^- \rightarrow \text{CO} + 2e^-\)
\(\text{C} + 2\text{O}_2^- \rightarrow \text{CO}_2 + 4e^-\)
(D) In this context, the cathode consists of a steel vessel with a carbon lining.
A block of mass 1 kg is pushed up a surface inclined to horizontal at an angle of \( 60^\circ \) by a force of 10 N parallel to the inclined surface. When the block is pushed up by 10 m along the inclined surface, the work done against frictional force is:
[Given: \( g = 10 \) m/s\( ^2 \), \( \mu_s = 0.1 \)]
A gas can be taken from A to B via two different processes ACB and ADB. When path ACB is used, \( 60 J \) of heat flows into the system and \( 30 J \) of work is done by the system. If path ADB is used, the work done by the system is \( 10 J \). The heat flow into the system in path ADB is:
Two identical concave mirrors each of focal length $ f $ are facing each other as shown. A glass slab of thickness $ t $ and refractive index $ n_0 $ is placed equidistant from both mirrors on the principal axis. A monochromatic point source $ S $ is placed at the center of the slab. For the image to be formed on $ S $ itself, which of the following distances between the two mirrors is/are correct: