Step 1: Find the price per litre of each chemical.
Let the prices of the three chemicals be \( x, y, z \).
From the given mixtures:
Mixture 1 ratio \( 3:7:8 \) gives:
\[
\frac{3x + 7y + 8z}{18} = 15 \quad \Rightarrow \quad 3x + 7y + 8z = 270
\]
Mixture 2 ratio \( 2:5:9 \) gives:
\[
\frac{2x + 5y + 9z}{16} = 18 \quad \Rightarrow \quad 2x + 5y + 9z = 288
\]
Step 2: Subtract equations to eliminate variables.
Subtract the two equations:
\[
(3x + 7y + 8z) - (2x + 5y + 9z) = 270 - 288
\]
\[
x + 2y - z = -18
\]
Step 3: Use weighted-average approach.
For mixture 3, ratio = \( 6:13:5 \), total = 24.
Cost price of mixture 3 =
\[
\frac{6x + 13y + 5z}{24}
\]
Using system-solving methods (eliminating variables), the value of
\[
6x + 13y + 5z = 216
\]
Thus, mixture price:
\[
\frac{216}{24} = 9
\]
Step 4: Conclusion.
The cost price of the final mixture is Rs.\ 9 per litre.