The relation for kinetic energy of S.H.M. is given by
$=\frac{1}{2} m \omega^{2}\left(a^{2}-y^{2}\right)$ ...(1)
Potential energy is given by
$=\frac{1}{2} m \omega^{2} y^{2}$ ...(2)
Now for the condition of question and from eqs. (1) and (2)
$\frac{1}{2} m \omega^{2}\left(a^{2}-y^{2}\right)$
$=\frac{1}{3} \times \frac{1}{2} m \omega^{2} y^{2}$
or $\frac{4}{6} m \omega^{2} y^{2}=\frac{1}{2} m \omega^{2} a^{2}$
or $y^{2}=\frac{3}{4} a^{2}$
So, $y =\frac{a}{2} \sqrt{3}=0.866 a$
$\approx 87 \%$ of amplitude