Concept:
Average power $= \dfrac{\text{Work done}}{\text{Time}}$
Instantaneous power $= \vec{F} \cdot \vec{v}$
Work done by a constant force $= \vec{F} \cdot \vec{s}$
Step 1: Displacement of the body:
\[
\vec{s} = (6 - 3)\hat{i} + (10 - 4)\hat{j} = 3\hat{i} + 6\hat{j}
\]
Step 2: Work done by the force:
\[
W = \vec{F} \cdot \vec{s} = (2\hat{i} + 3\hat{j}) \cdot (3\hat{i} + 6\hat{j})
\]
\[
W = 6 + 18 = 24\,\text{J}
\]
Step 3: Average power:
\[
P_{\text{avg}} = \frac{W}{t} = \frac{24}{4} = 6\,\text{W}
\]
Step 4: Acceleration of the body:
\[
\vec{a} = \frac{\vec{F}}{m} = \frac{1}{4}(2\hat{i} + 3\hat{j}) = 0.5\hat{i} + 0.75\hat{j}
\]
Step 5: Velocity at the end of 4 sec (initial velocity zero):
\[
\vec{v} = \vec{a}t = 4(0.5\hat{i} + 0.75\hat{j}) = 2\hat{i} + 3\hat{j}
\]
Step 6: Instantaneous power at $t = 4$ sec:
\[
P_{\text{inst}} = \vec{F} \cdot \vec{v} = (2\hat{i} + 3\hat{j}) \cdot (2\hat{i} + 3\hat{j})
\]
\[
P_{\text{inst}} = 4 + 9 = 13\,\text{W}
\]
Step 7: Required ratio:
\[
P_{\text{avg}} : P_{\text{inst}} = 6 : 13
\]