When a bar magnet is pushed towards the coil, along its axis, as shown in the figure, the galvanometer pointer deflects towards X. When this magnet is pulled away from the coil, the galvanometer pointer
Two resistors are connected in a circuit loop of area 5 m\(^2\), as shown in the figure below. The circuit loop is placed on the \( x-y \) plane. When a time-varying magnetic flux, with flux-density \( B(t) = 0.5t \) (in Tesla), is applied along the positive \( z \)-axis, the magnitude of current \( I \) (in Amperes, rounded off to two decimal places) in the loop is (answer in Amperes).
List I | List II | ||
---|---|---|---|
A | Faraday's law | I | $\bigtriangledown -\bar{B}=0 $ |
B | Ampere's law | II | $\bigtriangledown -\bar{D}=\rho_v $ |
C | No monopole | III | $\bigtriangledown -\bar{H}=\bar{J}+\frac{\partial\bar{D} }{\partial t} $ |
D | Gauss's law | IV | $\bigtriangledown -\bar{E}=-\frac{\partial\bar{B} }{\partial t} $ |
A block of certain mass is placed on a rough floor. The coefficients of static and kinetic friction between the block and the floor are 0.4 and 0.25 respectively. A constant horizontal force \( F = 20 \, \text{N} \) acts on it so that the velocity of the block varies with time according to the following graph. The mass of the block is nearly (Take \( g = 10 \, \text{m/s}^2 \)):
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is