For the DC case, the impedance is simply the resistance \(R\), and the current is given by:
\[
I_{\text{dc}} = \frac{V}{R} \quad \Rightarrow \quad R = \frac{V}{I_{\text{dc}}} = \frac{100}{1} = 100 \, \Omega
\]
For the AC case, the total impedance \(Z\) is the sum of the resistance \(R\) and the inductive reactance \(X_L\):
\[
I_{\text{ac}} = \frac{V}{Z} \quad \Rightarrow \quad Z = \frac{V}{I_{\text{ac}}} = \frac{100}{0.5} = 200 \, \Omega
\]
The impedance \(Z\) for an inductive circuit is given by:
\[
Z = \sqrt{R^2 + X_L^2}
\]
Substitute the values:
\[
200 = \sqrt{100^2 + X_L^2} \quad \Rightarrow \quad X_L = \sqrt{200^2 - 100^2} = 173.2 \, \Omega
\]
The inductive reactance \(X_L\) is related to the inductance \(L\) by:
\[
X_L = 2 \pi f L
\]
Substitute the frequency \(f = 50 \, \text{Hz}\):
\[
173.2 = 2 \pi \times 50 \times L \quad \Rightarrow \quad L = \frac{173.2}{2 \pi \times 50} \approx 0.55 \, \text{H}
\]