To determine the day of the week for 16th July 1776, we apply Zeller's Congruence for the Gregorian calendar:
\[
h = \left(q + \left\lfloor \frac{13(m+1)}{5} \right\rfloor + K + \left\lfloor \frac{K}{4} \right\rfloor + \left\lfloor \frac{J}{4} \right\rfloor + 5J \right) \mod 7
\]
where:
\begin{itemize}
\item \( h \) = day of the week (0 = Saturday, 1 = Sunday, ..., 6 = Friday)
\item \( q \) = day of the month (16)
\item \( m \) = month (March = 3, April = 4, ..., January = 13, February = 14)
\item \( K \) = last two digits of the year (\( 1776 \mod 100 = 76 \))
\item \( J \) = century (\( \text{floor}(1776 / 100) = 17 \))
\end{itemize}
Step 1: Assign Values
For July, the month value is \( m = 7 \), and no year adjustment is needed.
Step 2: Substitute Values into the Formula
\[
h = \left(16 + \left\lfloor \frac{13(7+1)}{5} \right\rfloor + 76 + \left\lfloor \frac{76}{4} \right\rfloor + \left\lfloor \frac{17}{4} \right\rfloor + 5(17) \right) \mod 7
\]
Step 3: Compute Individual Terms
\begin{itemize}
\item \( \left\lfloor \frac{13(7+1)}{5} \right\rfloor = \left\lfloor \frac{104}{5} \right\rfloor = 20 \)
\item \( \left\lfloor \frac{76}{4} \right\rfloor = 19 \)
\item \( \left\lfloor \frac{17}{4} \right\rfloor = 4 \)
\item \( 5(17) = 85 \)
\end{itemize}
Step 4: Compute the Final Value of \( h \)
\[
h = (16 + 20 + 76 + 19 + 4 + 85) \mod 7
\]
\[
h = 220 \mod 7
\]
\[
h = 3
\]
Step 5: Interpret the Result
The value \( h = 3 \) corresponds to:
\begin{itemize}
\item 0 = Saturday
\item 1 = Sunday
\item 2 = Monday
\item 3 = Tuesday
\end{itemize}
Final Answer:
The 16th of July 1776 fell on a Tuesday.
\[
\boxed{B}
\]