The maximum current \( I_{\text{max}} \) flowing through an inductor is given by the formula:
\[
I_{\text{max}} = \frac{V_{\text{max}}}{L \cdot \omega}
\]
where \( V_{\text{max}} \) is the maximum voltage, \( L \) is the inductance, and \( \omega = 2 \pi f \) is the angular frequency, with \( f = 50 \, \text{Hz} \) being the frequency.
Rearranging the formula for inductance \( L \):
\[
L = \frac{V_{\text{max}}}{I_{\text{max}} \cdot \omega}
\]
Substitute the given values:
- \( V_{\text{max}} = 200 \, \text{V} \)
- \( I_{\text{max}} = \sqrt{2} \, \text{A} \)
- \( f = 50 \, \text{Hz} \)
First, calculate the angular frequency \( \omega \):
\[
\omega = 2 \pi \times 50 = 314.16 \, \text{rad/s}
\]
Now substitute the values into the equation for \( L \):
\[
L = \frac{200}{\sqrt{2} \times 314.16}
\]
\[
L = \frac{200}{444.26} \approx 0.450 \, \text{H}
\]
Thus, the inductance required is approximately \( \frac{1}{4} \, \text{H} \).