Area of the virtual image of each square, A= 6.25mm2
Area of each square, A°= 1mm2
Hence, the linear magnification of the object can be calculated as: m = \(\sqrt{\frac{A }{ A°}} = \sqrt{\frac{6.25 }{ 1}}= 2.5\)
But \(m = \frac{Image \space distance (v) }{ Object \space distance (u)}\)
∴ \(v = mu = 2.5u...(\)\(1)\)
Focal length of the magnifying glass, f = 10cm
According, to the lens formula, we have the relation: \(\frac{1 }{ƒ}= \frac{1}{v} - \frac{1 }{ u}\)
\(\frac{1}{10}= \frac{1 }{ 2.5u} - \frac{1 }{ u}= \frac{1 }{u} (\frac{1 }{ 2.5} -\frac{1 }{ 1}) = \frac{1}{u} (\frac{1-2.5 }{ 2.5})\)
\(∴ u = \frac{-1.5 \times 10 }{ 2.5} = -6cm\)
And v = 2.5u = 2.5 × 6 = -15cm
The virtual image is formed at a distance of 15cm, which is less than the near point (i.e., 25cm) of a normal eye, it cannot be seen by the eyes distinctly.
A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(i)} Express the distance \( y \) between the wall and foot of the ladder in terms of \( h \) and height \( x \) on the wall at a certain instant. Also, write an expression in terms of \( h \) and \( x \) for the area \( A \) of the right triangle, as seen from the side by an observer.
निम्नलिखित गद्यांश की सप्रसंग व्याख्या कीजिए :
‘‘पुर्ज़े खोलकर फिर ठीक करना उतना कठिन काम नहीं है, लोग सीखते भी हैं, सिखाते भी हैं, अनाड़ी के हाथ में चाहे घड़ी मत दो पर जो घड़ीसाज़ी का इम्तहान पास कर आया है उसे तो देखने दो । साथ ही यह भी समझा दो कि आपको स्वयं घड़ी देखना, साफ़ करना और सुधारना आता है कि नहीं । हमें तो धोखा होता है कि परदादा की घड़ी जेब में डाले फिरते हो, वह बंद हो गई है, तुम्हें न चाबी देना आता है न पुर्ज़े सुधारना तो भी दूसरों को हाथ नहीं लगाने देते इत्यादि ।’’