To determine the maximum shear stress from the Mohr circle, we can use the following relation:
\[
\tau_{{max}} = \frac{\sigma_1 - \sigma_3}{2}
\]
Where:
\( \sigma_1 = 50 \, {MPa} \) (major principal stress),
\( \sigma_3 = 10 \, {MPa} \) (minor principal stress).
Step 1: Apply the formula
Substituting the values into the formula for maximum shear stress:
\[
\tau_{{max}} = \frac{50 \, {MPa} - 10 \, {MPa}}{2} = \frac{40 \, {MPa}}{2} = 20 \, {MPa}
\]
Step 2: Conclusion
The maximum shear stress is \( 20 \, {MPa} \).