First, compute la$(10, 5, 3) = \min(10+5, 5+3) = \min(15, 8) = 8$.
Then compute le$(8, 5, 3) = \max(8-5, 5-3) = \max(3, 2) = 3$.
Now ma$(10, 4, 3) = \frac{1}{2}[\text{le}(10, 4, 3) + \text{la}(10, 4, 3)]$.
le$(10, 4, 3) = \max(10-4, 4-3) = \max(6, 1) = 6$.
la$(10, 4, 3) = \min(10+4, 4+3) = \min(14, 7) = 7$.
Therefore, ma = $\frac{1}{2}(6 + 7) = \frac{13}{2} = 6.5$.